Trajectory Optimization For Wheeled-Legged Quadrupedal Robots Using Linearized Zmp Constraints

IEEE ROBOTICS AND AUTOMATION LETTERS(2019)

引用 55|浏览65
暂无评分
摘要
We present a trajectory optimizer for quadrupedal robots with actuated wheels. By solving for angular, vertical, and planar components of the base and feet trajectories in a cascaded fashion and by introducing a novel linear formulation of the zero-moment point balance criterion, we rely on quadratic programming only, thereby eliminating the need for nonlinear optimization routines. Yet, even for gaits containing full flight phases, we are able to generate trajectories for executing complex motions that involve simultaneous driving, walking, and turning. We verified our approach in simulations of the quadrupedal robot ANYmal equipped with wheels, where we are able to run the proposed trajectory optimizer at 50 Hz. To the best of our knowledge, this is the first time that such dynamic motions are demonstrated for wheeled-legged quadrupedal robots using an online motion planner.
更多
查看译文
关键词
Legged robots, wheeled robots, motion and path planning, optimization and optimal control
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要