Assembly of a heptameric STRIPAK complex is required for coordination of light-dependent multicellular fungal development with secondary metabolism in Aspergillus nidulans.

PLOS GENETICS(2019)

引用 28|浏览22
暂无评分
摘要
Eukaryotic striatin forms striatin-interacting phosphatase and kinase (STRIPAK) complexes that control many cellular processes including development, cellular transport, signal transduction, stem cell differentiation and cardiac functions. However, detailed knowledge of complex assembly and its roles in stress responses are currently poorly understood. Here, we discovered six striatin (StrA) interacting proteins (Sips), which form a heptameric complex in the filamentous fungus Aspergillus nidulans. The complex consists of the striatin scaffold StrA, the Mob3-type kinase coactivator SipA, the SIKE-like protein SipB, the STRIP1/2 homolog SipC, the SLMAP-related protein SipD and the catalytic and regulatory phosphatase 2A subunits SipE (PpgA), and SipF, respectively. Single and double deletions of the complex components result in loss of multicellular light-dependent fungal development, secondary metabolite production (e.g. mycotoxin Sterigmatocystin) and reduced stress responses. sipA (Mob3) deletion is epistatic to strA deletion by supressing all the defects caused by the lack of striatin. The STRIPAK complex, which is established during vegetative growth and maintained during the early hours of light and dark development, is mainly formed on the nuclear envelope in the presence of the scaffold StrA. The loss of the scaffold revealed three STRIPAK subcomplexes: (I) SipA only interacts with StrA, (II) SipB-SipD is found as a heterodimer, (III) SipC, SipE and SipF exist as a heterotrimeric complex. The STRIPAK complex is required for proper expression of the heterotrimeric VeA-VelB-LaeA complex which coordinates fungal development and secondary metabolism. Furthermore, the STRIPAK complex modulates two important MAPK pathways by promoting phosphorylation of MpkB and restricting nuclear shuttling of MpkC in the absence of stress conditions. SipB in A. nidulans is similar to human suppressor of IKK-epsilon(SIKE) protein which supresses antiviral responses in mammals, while velvet family proteins show strong similarity to mammalian proinflammatory NF-KB proteins. The presence of these proteins in A. nidulans further strengthens the hypothesis that mammals and fungi use similar proteins for their immune response and secondary metabolite production, respectively. Author summary The multisubunit STRIPAK complex has been studied from yeast to human and plays a range of roles from cell-cycle arrest, fruit body formation to neuronal functions. Molecular assembly of the STRIPAK complex and its roles in stress responses are not well-documented. Fungi, with an estimated 1.5 million members are friends and foes of mankind, acting as pathogens, natural product and enzyme producers. In filamentous fungus Aspergillus nidulans, we found a heptameric STRIPAK core complex made from three subcomplexes, which sits on the nuclear envelope and coordinates signal influx for light-dependent fungal development, secondary metabolism and stress responses. STRIPAK complex controls activities of two major Mitogen Activated Protein Kinase (MAPK) signaling pathways through either promoting their phosphorylation or limiting their nuclear localization under resting conditions. These findings establish a basis for how fungi govern signal influx by using multimeric scaffold protein complexes on the nuclear envelope to control different downstream pathways.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要