Supporting Fine-grained Dataflow Parallelism in Big Data Systems.

PPoPP '18: 23nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming Vienna Austria February, 2018(2018)

引用 13|浏览21
暂无评分
摘要
Big data systems scale with the number of cores in a cluster for the parts of an application that can be executed in data parallel fashion. It has been recently reported, however, that these systems fail to translate hardware improvements, such as increased network bandwidth, into a higher throughput. This is particularly the case for applications that have inherent sequential, computationally intensive phases. In this paper, we analyze the data processing cores of state-of-the-art big data systems to find the cause for these scalability problems. We identify design patterns in the code that are suitable for pipeline and task-level parallelism, potentially increasing application performance. As a proof of concept, we rewrite parts of the Hadoop MapReduce framework in an implicit parallel language that exploits this parallelism without adding code complexity. Our experiments on a data analytics workload show throughput speedups of up to 3.5x.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要