Targeting c-MET by Tivantinib through synergistic activation of JNK/c-jun pathway in cholangiocarcinoma

CELL DEATH & DISEASE(2019)

引用 10|浏览13
暂无评分
摘要
Clinical treatment options for human cholangiocarcinoma (CC) are limited. c-MET, a high-affinity receptor for hepatocyte growth factor (HGF), is deregulated in many cancers. Its role in cholangiocarcinogenesis remains unclear. In current study, 23 corresponding tumor- and non-tumor tissues, taken from patients with intrahepatic (iCC) and perihilar cholangiocarcinoma (pCC), who underwent liver resection, were analyzed. The relationship of clinicopathological features and c-MET, as well as c-jun N-terminal kinase (JNK) was evaluated. The anti-tumor effects of Tivantinib, a small-molecule inhibitor with potent activity against the c-MET kinase, was investigated in three human CC cell lines, namely HUCC-T1, TFK-1, and EGI-1. In comparison with the results obtained in non-tumor tissue samples, c-MET was overexpressed in 91.3 % of tumor tissues ( p < 0.01). The JNK expression was higher in tumor tissue compared with the corresponding non-tumor tissue sample in 17.4% patients ( p < 0.01). The inhibition of aberrant c-MET expression in human CC cell lines was achieved by blocking the phosphorylation of c-MET with Tivantinib. Notable losses in cell viability and colony-forming capability were detected ( p < 0.01). Synergistic activation of the JNK/c-jun pathway was demonstrated after Tivantinib treatment. Knockdown of the JNK by siRNA or competitive binding of c-MET receptor by stimulation with HGF-antagonized anti-tumor effects of Tivantinib was observed. Our data suggest that inhibition of c-MET could be a possible alternative approach for the treatment of human CC, for which Tivantinib may an effective inhibitor. The synergistic activation of the JNK/c-jun pathway contributed to the elevated apoptosis in CC cells via treatment with Tivantinib.
更多
查看译文
关键词
Apoptosis,Cell signalling,Targeted therapies,Life Sciences,general,Biochemistry,Cell Biology,Immunology,Cell Culture,Antibodies
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要