Ab Initio Molecular Dynamics Simulations Of Nitrogen/Vn(001) Surface Reactions: Vacancy-Catalyzed N-2 Dissociative Chemisorption, N Adatom Migration, And N-2 Desorption

JOURNAL OF PHYSICAL CHEMISTRY C(2016)

引用 41|浏览5
暂无评分
摘要
We use density-functional ab initio molecular dynamics to investigate the kinetics of N/VN(001) surface reactions at temperatures ranging from 1600 to 2300 K. N adatoms (N-ad) on VN(001) favor epitaxial atop-V positions and diffuse among them by transiting through 4-fold hollow (FFH) sites, at which they are surrounded by two V and two N surface atoms. After several atop-V -> FFH -> atop-V jumps, isolated N adatoms bond strongly with an underlying N surface (N-surf) atom. Frequent N-ad/N-surf pair exchange reactions lead to N-2 desorption, which results in the formation of an anion surface vacancy. N vacancies rapidly migrate via in-plane (110) jumps and act as efficient catalysts for the dissociative chemisorption of incident N-2 molecules. During exposure of VN(001) to incident atomic N gas atoms, N-ad/N-ad recombination and desorption is never observed, despite a continuously high N monomer surface coverage. Instead, N-2 desorption is always initiated by a N adatom removing a N surface atom or by energetic N gas atoms colliding with N-ad or N-surf atoms. Similarities and differences between: N/VN(001) vs. previous N/TiN(001) results, discussed on the basis of temperature-dependent ab initio electronic structures and chemical bonding, provide insights for controlling the reactivity of NaCl-structure transition-metal nitride (001) surfaces via electron-concentration tuning.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要