Determination of Kinetic, Isotherm, and Thermodynamic Parameters of the Methamidophos Adsorption onto Cationic Surfactant-Modified Zeolitic Materials

Water Air and Soil Pollution(2018)

引用 10|浏览3
暂无评分
摘要
In the present study, a natural clinoptilolite was conditioned with NaCl solution and subsequently modified with different cationic hexadecyltrimethylammonium surfactant concentrations for methamidophos removal. The surfactant-modified zeolitic material with maximum methamidophos adsorption capacity was chosen, and the effect of several parameters such as contact time and initial pesticide concentration were performed by batch system. Other parameters such as the effect of adsorbent dosage, pH, and temperature were also evaluated. Natural, NaCl-conditioned, and the best surfactant-modified zeolitic materials were systematically characterized by several analytic techniques such as scanning electron microscopy with energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and BET-specific surface area by N 2 physisorption measurements. The zero point charge was also determined in each studied zeolitic material. Derived results showed a maximum methamidophos adsorption of 1.385 mg/g onto zeolitic material surfactant-modified with 25 mmol/L at 20 °C. The experimental adsorption kinetics and isotherms data were well adjusted with pseudo-second order and Langmuir isotherm models in its not linearized form, respectively. The amount of adsorbent and pH in the surfactant-modified zeolitic material influences the pesticide adsorption capacity. Thermodynamic parameters indicated that methamidophos adsorption on surfactant-modified zeolitic material at 25 mmol/L was an exothermic in nature process, not spontaneous, and with decreased randomness. The obtained results in the present research contribute as study of methamidophos adsorption behavior with zeolitic materials application as an alternative removal method for organophosphates pesticides.
更多
查看译文
关键词
Zeolitic materials, Adsorption, Methamidophos, Kinetics, Isotherms, Thermodynamic parameters
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要