Sinkholes, stream channels and base-level fall: a 50-year record of spatio-temporal development on the eastern shore of the Dead Sea

Solid Earth Discussions(2018)

引用 4|浏览16
暂无评分
摘要
Abstract. The fall of hydrological base-level is long established as a driver of geomorphological change in both fluvial and karst systems, but few natural occurrences occur on timescales suitable for direct observation. Here we document the spatiotemporal development of fluvial and karstic landforms along the eastern coast of the hypersaline Dead Sea (at Ghor al-Haditha, Jordan) during a 50-year period of regional base-level decline from 1967 to 2017. Combining remote sensing data with close-range photogrammetric surveys, we show that the 35 m base-level fall has caused shoreline retreat of up to 2.5 km, and resulted in: (1) incision of new meandering or straight/braided stream channels and (2) formation of > 1100 sinkholes and several salt-karst uvalas. Both alluvial incision and karst-related subsidence represent significant hazards to local infrastructure. The development of groundwater-fed meandering stream channels is in places interlinked with that of the sinkholes and uvalas. Moreover, active areas of channel incision and sinkhole development both migrate seaward in time, broadly in tandem with shoreline retreat. Regarding theoretical effects of base-level fall, our observations show some deviations from those predicted for channel geometry, but are remarkably consistent with those for groundwater-related salt karstification. Our results present, for the first time in the Dead Sea region, the dual response of surface and subsurface hydrological systems to base level drop as indicated by fluvial and karst geomorphological analysis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要