Numerical study of the dynamic characteristics of a single-layer graphite core in a thorium molten salt reactor

Nuclear Science and Techniques(2018)

引用 6|浏览6
暂无评分
摘要
A reactor core in a thorium molten salt reactor uses graphite as a moderator and reflector. The graphite core is a multi-layered arrangement of graphite bricks that are loosely connected to each other using a system of keys and dowels. Consequently, the graphite core is a type of discrete stack structure with highly nonlinear dynamic behavior. Hence, it is important to investigate the dynamic characteristics of the graphite core. In this study, a three-dimensional single-layer graphite core model, which is a part of the thorium molten salt reactor side reflector structure, was analyzed using the explicit method in ABAQUS 2016 to study the core dynamic behavior when subjected to different excitations. The design parameters, such as the diameter of the dowel, the gap between key and keyway and the bypass flow gap between two adjacent bricks, were also considered in this model. To reduce excessive demands on available computational resources considering the effect of molten salt, the spring–dashpot model was applied to model the interaction forces between the molten salt and graphite bricks. Numerical simulation results show that the effect of molten salt is a reduction in the peak maximal principal stress, and a larger gap between two bricks is beneficial to maintain the integrity of the graphite core under earthquake loading. The results obtained by the simulation can be used as a reference for future designs of a molten salt graphite core.
更多
查看译文
关键词
Graphite core,Dynamic behavior,ABAQUS
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要