Crystal fractionation of granitic magma during its non-transport processes: A physics-based perspective

Science China-earth Sciences(2018)

引用 25|浏览10
暂无评分
摘要
Granitic continental crust distinguishes the Earth from other planets in the Solar System. Consequently, for understanding terrestrial continent development, it is of great significance to investigate the formation and evolution of granite. Crystal fractionation is one of principal magma evolution mechanisms. Nevertheless, it is controversial whether crystal fractionation can effectively proceed in felsic magma systems because of the high viscosity and non-Newtonian behavior associated with granitic magmas. In this paper, we focus on the physical processes and evaluate the role of crystal fractionation in the evolution of granitic magmas during non-transport processes, i.e., in magma chambers and after emplacement. Based on physical calculations and analyses, we suggest that general mineral particles can settle only at tiny speed (∼10 −9 –10 −7 m s −1 ) in a granitic magma body due to high viscosity of the magma; however, the cumulating can be interrupted with convection in magma chambers, and the components of magma chambers will tend to be homogeneous. Magma convection ceases once the magma chamber develops into a mush (crystallinity, F>∼40–50%). The interstitial melts can be extracted by hindered settling and compaction, accumulating gradually and forming a highly silicic melt layer. The high silica melts can further evolve into high-silica granite or high-silica rhyolite. At various crystallinities, multiple rejuvenation of the mush and the following magma intrusion may generate a granite complex with various components. While one special type of granites, represented by the South China lithium- and fluoride- rich granite, has lower viscosity and solidus relative to general granitic magmas, and may form vertical zonation in mineral-assemblage and composition through crystal fractionation. Similar fabrics in general intrusions that show various components on small lengthscales are not the result of gravitational settling. Rather, the flowage differentiation may play a key role. In general, granitic magma can undergo effective crystal fractionation; high-silica granite and volcanics with highly fractionated characteristics may be the products of crystal fractionation of felsic magmas, and many granitoids may be cumulates.
更多
查看译文
关键词
Granite,Crystal fractionation,Magma convection,Layering structure,Mush model,Highly fractionated granite,Granite complex,Li-F granite
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要