Regulatory divergence of flowering time genes in the allopolyploid Brassica napus

bioRxiv(2017)

引用 1|浏览29
暂无评分
摘要
Polyploidy is a recurrent feature of eukaryotic evolution and has been linked to increases in complexity, adaptive radiation and speciation. Within angiosperms, such events occur repeatedly in many plant lineages. We investigated the role of duplicated genes in the regulation of flowering in Brassica napus. This relatively young allotetraploid represents a snapshot of evolution and artificial selection in progress. In line with the gene balance hypothesis, we find preferential retention of expressed flowering time genes relative to the whole genome. Furthermore, gene expression dynamics across development reveal diverged regulation of many flowering time gene copies. This finding supports the concept of responsive backup circuits being key for the retention of duplicated genes. A case study of BnaTFL1 reveals differences in cis-regulatory elements downstream of these genes that could explain this divergence. Such differences in the regulatory dynamics of duplicated genes highlight the challenges for translating gene networks from model to more complex polyploid crop species.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要