Mitigation of divertor heat flux by high-frequency ELM pacing with non-fuel pellet injection in DIII-D

NUCLEAR MATERIALS AND ENERGY(2017)

引用 15|浏览76
暂无评分
摘要
Experiments have been conducted on DIII-D investigating high repetition rate injection of non-fuel pellets as a tool for pacing Edge Localized Modes (ELMs) and mitigating their transient divertor heat loads. Effective ELM pacing was obtained with injection of Li granules in different H-mode scenarios, at frequencies 3-5 times larger than the natural ELM frequency, with subsequent reduction of strike-point heat flux (Bortolon et al., Nucl. Fus., 56, 056008, 2016). However, in scenarios with high pedestal density (similar to 6 x 10(19) m(-3)), the magnitude of granule triggered ELMs shows a broad distribution, in terms of stored energy loss and peak heat flux, challenging the effectiveness of ELM mitigation. Furthermore, transient heat-flux deposition correlated with granule injections was observed far from the strike-points. Field line tracing suggest this phenomenon to be consistent with particle loss into the mid-plane far scrape-off layer, at toroidal location of the granule injection. (C) 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要