Towards ultrasound travel time tomography for quantifying human limb geometry and material properties

Proceedings of SPIE(2016)

引用 4|浏览10
暂无评分
摘要
Sound speed inversions made using simulated time of flight data from a numerical limb-mimicking phantom comprised of soft tissue and a bone inclusion demonstrate that wave front tracking forward modeling combined with L1 regularization may lead to accurate estimates of bone sound speed. Ultrasonic tomographic imaging of limbs has the potential to impact prosthetic socket fitting, as well as detect and track muscular dystrophy diseases, osteoporosis and bone fractures at low cost and without radiation exposure. Research in ultrasound tomography of bones has increased in the last 10 years, however, methods delivering clinically useful sound speed inversions are lacking.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要