Water molecules in protein–ligand interfaces. Evaluation of software tools and SAR comparison

Journal of Computer-Aided Molecular Design(2019)

引用 22|浏览34
暂无评分
摘要
Targeting the interaction with or displacement of the ‘right’ water molecule can significantly increase inhibitor potency in structure-guided drug design. Multiple computational approaches exist to predict which waters should be targeted for displacement to achieve the largest gain in potency. However, the relative success of different methods remains underexplored. Here, we present a comparison of the ability of five water prediction programs (3D-RISM, SZMAP, WaterFLAP, WaterRank, and WaterMap) to predict crystallographic water locations, calculate their binding free energies, and to relate differences in these energies to observed changes in potency. The structural cohort included nine Bruton’s Tyrosine Kinase (BTK) structures, and nine bromodomain structures. Each program accurately predicted the locations of most crystallographic water molecules. However, the predicted binding free energies correlated poorly with the observed changes in inhibitor potency when solvent atoms were displaced by chemical changes in closely related compounds. Graphical abstract
更多
查看译文
关键词
Water,Water prediction,Water placement,Water scoring,3D-RISM,SZMAP,WaterFLAP,WaterMap,WaterRank,BTK,Bruton’s Tyrosine kinase,BRD,Bromodomain
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要