谷歌浏览器插件
订阅小程序
在清言上使用

Calreticulin mutation specific CAL2 immunohistochemistry accurately identifies rare calreticulin mutations in myeloproliferative neoplasms.

Pathology(2019)

引用 7|浏览62
暂无评分
摘要
Mutations of the multifunctional protein calreticulin (CALR) are recognised as one of the main driver alterations involved in the pathogenesis of Philadelphia negative myeloproliferative neoplasms (Ph– MPN) and also represent a major diagnostic criterion in the most recent World Health Organization classification of myeloid neoplasms. Nowadays, quantitative assessment of the driver mutations is gaining importance, as recent studies demonstrated the clinical relevance of the mutation load reflecting the size of the mutant clone. Here, we performed for the first time a manual and automated quantitative assessment of the CALR mutation load at protein level using CAL2, a recently developed CALR mutation specific monoclonal antibody, on a cohort of 117 patients with essential thrombocythemia (ET) or primary myelofibrosis (PMF) and compared the CALR protein mutation loads with the CALR mutation load values established by a molecular assay. Eighteen different CALR mutations were detected in the cohort of the 91 CALR mutant cases. Mutation loads of the CALR mutations were between 13% and 94% with mean value in PMF cases significantly higher than ET cases (49.94 vs 41.09; t-test, p=0.004). Cases without CALR mutation (n=26) showed no or only minimal labelling with the CAL2 antibody, while all 18 different types of CALR mutations were associated with CAL2 labelling. The CALR mutation load showed a significant correlation (p=0.03) with the occurrence of major thrombotic events, with higher mutation load in patients presenting with these complications. We report a 100% concordance between the mutation status determined by immunohistochemistry and the CALR molecular assay, and we extend the applicability of this approach to 16 rare CALR mutations previously not analysed at protein level.
更多
查看译文
关键词
Myeloproliferative neoplasms,calreticulin mutation,mutation load,CAL2 immunohistochemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要