Automatic glomerular identification and quantification of histological phenotypes using image analysis and machine learning.

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY(2018)

引用 25|浏览18
暂无评分
摘要
Current methods of scoring histological kidney samples. specifically glomeruli, do not allow for collection of quantitative data in a high-throughput and consistent manner. Neither untrained individuals nor computers are presently capable of identifying glomerular features, so expert pathologists must do the identification and score using a categorical matrix, complicating statistical analysis. Critical information regarding overall health and physiology is encoded in these samples. Rapid comprehensive histological scoring could he used, in combination with other physiological measures, to significantly advance renal research. Therefore, we used machine learning to develop a high-throughput method to automatically identify and collect quantitative data from glomeruli. Our method requires minimal human interaction between steps and provides quantifiable data independent of user bias. The method uses free existing software and is usable without extensive image analysis training. Validation of the classifier and feature scores in mice is highlighted in this work and shows the power of applying this method in murine research. Preliminary results indicate that the method can be applied to data sets from different species after training on relevant data, allowing for fast glomerular identification and quantitative measurements of glomerular features. Validation of the classifier and feature scores are high-lighted in this work and show the power of applying this method. The resulting data are free from user bias. Continuous data, such that statistical analysis can he performed, allows for more precise and comprehensive interrogation of samples. These data can then be combined with other physiological data to broaden our overall understanding of renal function.
更多
查看译文
关键词
digital pathology,histology,machine learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要