Walking the Walk: A Giant Step toward Sustainable Plasmonics.

ACS nano(2016)

引用 36|浏览4
暂无评分
摘要
The use of earth-abundant materials is at the frontier of nanoplasmonics research, where their availability and low cost can enable practical mainstream applications and commercial viability. Aluminum is of specific interest in this regard, due to its ability to support plasmon resonances throughout the ultraviolet (UV), visible, and infrared regions of the spectrum. However, the lack of accurate dielectric data has critically limited the agreement between theoretical predictions and experimental measurements of the optical properties of Al nanostructures compared, for example, to the agreement enjoyed by the noble/coinage metals. As reported in this issue of ACS Nano, efforts by Cheng et al. to determine the dielectric function of pristine Al show that Al has substantially lower loss than was indicated by previously reported dielectric data for Al, including a 2-fold lower loss for the UV region compared to that in previous studies. These results provide data that are essential for accurate agreement between theory and experiment for Al plasmonic nanostructures, placing this earth-abundant metal on sound footing as a new and highly promising material for sustainable plasmonics by design.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要