A Temporally Adaptive Material Point Method with Regional Time Stepping.

COMPUTER GRAPHICS FORUM(2018)

引用 30|浏览108
暂无评分
摘要
Spatially and temporally adaptive algorithms can substantially improve the computational efficiency of many numerical schemes in computational mechanics and physics-based animation. Recently, a crucial need for temporal adaptivity in the Material Point Method (MPM) is emerging due to the potentially substantial variation of material stiffness and velocities in multi-material scenes. In this work, we propose a novel temporally adaptive symplectic Euler scheme for MPM with regional time stepping (RTS), where different time steps are used in different regions. We design a time stepping scheduler operating at the granularity of small blocks to maintain a natural consistency with the hybrid particle/grid nature of MPM. Our method utilizes the Sparse Paged Grid (SPGrid) data structure and simultaneously offers high efficiency and notable ease of implementation with a practical multi-threaded particle-grid transfer strategy. We demonstrate the efficacy of our asynchronous MPM method on various examples including elastic objects, granular media, and fluids.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要