Privacy Amplification from Non-malleable Codes

IACR Cryptol. ePrint Arch.(2019)

引用 4|浏览4
暂无评分
摘要
Non-malleable Codes give us the following property: their codewords cannot be tampered into codewords of related messages. Privacy Amplification allows parties to convert their weak shared secret into a fully hidden, uniformly distributed secret key, while communicating on a fully tamperable public channel. In this work, we show how to construct a constant round privacy amplification protocol from any augmented split-state non-malleable code. Existentially, this gives us another primitive (in addition to optimal non-malleable extractors) whose optimal construction would solve the long-standing open problem of building constant round privacy amplification with optimal entropy loss and min-entropy requirement. Instantiating our code with the current best known NMC gives us an 8-round privacy amplification protocol with entropy loss O(log(n) + kappa log(kappa)) and min-entropy requirement Omega(log(n) + kappa log(kappa)), where kappa is the security parameter and n is the length of the shared weak secret. In fact, for our result, even the weaker primitive of Non-malleable Randomness Encoders suffice. We view our result as an exciting connection between two of the most fascinating and well-studied information theoretic primitives, non-malleable codes and privacy amplification.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要