Dark-Blood Delayed Enhancement Cardiac Magnetic Resonance of Myocardial Infarction.

JACC: Cardiovascular Imaging(2018)

引用 52|浏览74
暂无评分
摘要
This study introduced and validated a novel flow-independent delayed enhancement technique that shows hyperenhanced myocardium while simultaneously suppressing blood-pool signal.The diagnosis and assessment of myocardial infarction (MI) is crucial in determining clinical management and prognosis. Although delayed enhancement cardiac magnetic resonance (DE-CMR) is an in vivo reference standard for imaging MI, an important limitation is poor delineation between hyperenhanced myocardium and bright LV cavity blood-pool, which may cause many infarcts to become invisible.A canine model with pathology as the reference standard was used for validation (n = 22). Patients with MI and normal controls were studied to ascertain clinical performance (n = 31).In canines, the flow-independent dark-blood delayed enhancement (FIDDLE) technique was superior to conventional DE-CMR for the detection of MI, with higher sensitivity (96% vs. 85%, respectively; p = 0.002) and accuracy (95% vs. 87%, respectively; p = 0.01) and with similar specificity (92% vs, 92%, respectively; p = 1.0). In infarcts that were identified by both techniques, the entire length of the endocardial border between infarcted myocardium and adjacent blood-pool was visualized in 33% for DE-CMR compared with 100% for FIDDLE. There was better agreement for FIDDLE-measured infarct size than for DE-CMR infarct size (95% limits-of-agreement, 2.1% vs. 5.5%, respectively; p < 0.0001). In patients, findings were similar. FIDDLE demonstrated higher accuracy for diagnosis of MI than DE-CMR (100% [95% confidence interval [CI]: 89% to 100%] vs. 84% [95% CI: 66% to 95%], respectively; p = 0.03).The study introduced and validated a novel CMR technique that improves the discrimination of the border between infarcted myocardium and adjacent blood-pool. This dark-blood technique provides diagnostic performance that is superior to that of the current in vivo reference standard for the imaging diagnosis of MI.
更多
查看译文
关键词
cardiac magnetic resonance,diagnosis,infarct size,myocardial infarction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要