Race-to-sleep + content caching + display caching: a recipe for energy-efficient video streaming on handhelds.

MICRO-50: The 50th Annual IEEE/ACM International Symposium on Microarchitecture Cambridge Massachusetts October, 2017(2017)

引用 47|浏览118
暂无评分
摘要
Video streaming has become the most common application in handhelds and this trend is expected to grow in future to account for about 75% of all mobile data traffic by 2021. Thus, optimizing the performance and energy consumption of video processing in mobile devices is critical for sustaining the handheld market growth. In this paper, we propose three complementary techniques, race-to-sleep, content caching and display caching, to minimize the energy consumption of the video processing flows. Unlike the state-of-the-art frame-by-frame processing of a video decoder, the first scheme, race-to-sleep, uses two approaches, called batching of frames and frequency boosting to prolong its sleep state for saving energy, while avoiding any frame drops. The second scheme, content caching, exploits the content similarity of smaller video blocks, called macroblocks, to design a novel cache organization for reducing the memory pressure. The third scheme, in turn, takes advantage of content similarity at the display controller to facilitate display caching further improving energy efficiency. We integrate these three schemes for developing an end-to-end video processing framework and evaluate our design on a comprehensive mobile system design platform with a variety of video processing workloads. Our evaluations show that the proposed three techniques complement each other in improving performance by avoiding frame drops and reducing the energy consumption of video streaming applications by 21%, on average, compared to the current baseline design.
更多
查看译文
关键词
Mobile SoC, SoC, Memory, Video streaming, Display, Caching
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要