Fully Dynamic Algorithm for Top-k Densest Subgraphs.

CIKM(2017)

引用 24|浏览65
暂无评分
摘要
Given a large graph,the densest-subgraph problem asks to find a subgraph with maximum average degree. When considering the top-k version of this problem, a naïve solution is to iteratively find the densest subgraph and remove it in each iteration. However, such a solution is impractical due to high processing cost. The problem is further complicated when dealing with dynamic graphs, since adding or removing an edge requires re-running the algorithm. In this paper, we study the top-k densest-subgraph problem in the sliding-window model and propose an efficient fully-dynamic algorithm. The input of our algorithm consists of an edge stream, and the goal is to find the node-disjoint subgraphs that maximize the sum of their densities. In contrast to existing state-of-the-art solutions that require iterating over the entire graph upon any update, our algorithm profits from the observation that updates only affect a limited region of the graph. Therefore, the top-k densest subgraphs are maintained by only applying local updates. We provide a theoretical analysis of the proposed algorithm and show empirically that the algorithm often generates denser subgraphs than state-of-the-art competitors. Experiments show an improvement in efficiency of up to five orders of magnitude compared to state-of-the-art solutions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要