Telling Your Secrets Without Page Faults: Stealthy Page Table-Based Attacks On Enclaved Execution

PROCEEDINGS OF THE 26TH USENIX SECURITY SYMPOSIUM (USENIX SECURITY '17)(2017)

引用 298|浏览163
暂无评分
摘要
Protected module architectures, such as Intel SGX, enable strong trusted computing guarantees for hardware enforced enclaves on top a potentially malicious operating system. However, such enclaved execution environments are known to be vulnerable to a powerful class of controlled-channel attacks. Recent research convincingly demonstrated that adversarial system software can extract sensitive data from enclaved applications by carefully revoking access rights on enclave pages, and recording the associated page faults. As a response, a number of state-of-the-art defense techniques has been proposed that suppress page faults during enclave execution.This paper shows, however, that page table-based threats go beyond page faults. We demonstrate that an untrusted operating system can observe enclave page accesses without resorting to page faults, by exploiting other side-effects of the address translation process. We contribute two novel attack vectors that infer enclaved memory accesses from page table attributes, as well as from the caching behavior of unprotected page table memory. We demonstrate the effectiveness of our attacks by recovering EdDSA session keys with little to no noise from the popular Libgcrypt cryptographic software suite.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要