A Novel Resource Allocation and Power Control Mechanism for Hybrid Access Femtocells.

Computer Communications(2017)

引用 7|浏览22
暂无评分
摘要
LTE Small cells like Femto cells are being deployed in enterprises and residential buildings to improve data rates of indoor users who experience low Signal-to-Interference plus Noise Ratio (SINR) from Macro Base Stations (MBSs). Deployment of Femto cells inside a building can lead to signal leakage at the edges/corners of the buildings. This causes cross-tier interference and degrades the performance of users in High Interference Zone (HIZone) around the building area, who are connected to one of the MBSs in LTE Heterogeneous Networks (HetNets). Hybrid Access Femto cells (HAFs) can ensure QoS for paid Subscriber Group (SG) users by giving them preferential access to resource blocks over non-SG (NSG) users and also improve the throughput of LTE HetNet system by serving nearby NSG users. In this work, we address various challenges involved in deployment and operation of HAFs in indoor environments by proposing an Optimal Placement of Femto cell (OPF) model, a dynamic Bandwidth Allocation (BWA) mechanism for splitting resource blocks between SG and NSG users, a dynamic power control mechanism to mitigate co-tier and cross-tier interference in HetNets and an Enhanced Priority (EP) scheduling mechanism to give more priority to SG users over NSG users.
更多
查看译文
关键词
Hybrid access femtocells,Resource splitting,Optimization,Power control and dynamic scheduling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要