Encoding Domain Transitions for Constraint-Based Planning.

JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH(2017)

引用 7|浏览19
暂无评分
摘要
We describe a constraint-based automated planner named Transition Constraints for Parallel Planning (TCPP). TCPP constructs its constraint model from a redefined version of the domain transition graphs (DTG) of a given planning problem. TCPP encodes state transitions in the redefined DTGs by using table constraints with cells containing don't cares or wild cards. TCPP uses Minion the constraint solver to solve the constraint model and returns a parallel plan. We empirically compare TCPP with the other state-of-theart constraint-based parallel planner PaP2. PaP2 encodes action success ions in the finite state automata (FSA) as table constraints with cells containing sets of values. PaP2 uses SICStus Prolog as its constraint solver. We also improve PaP2 by using don't cares and mutex constraints. Our experiments on a number of standard classical planning benchmark domains demonstrate TCPP's efficiency over the original PaP2 running on SICStus Prolog and our reconstructed and enhanced versions of PaP2 running on Minion.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要