Towards Strong Reverse Minkowski-Type Inequalities for Lattices

2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)(2016)

引用 23|浏览54
暂无评分
摘要
We present a natural reverse Minkowski-type inequality for lattices, which gives upper bounds on the number of lattice points in a Euclidean ball in terms of sublattice determinants, and conjecture its optimal form. The conjecture exhibits a surprising wealth of connections to various areas in mathematics and computer science, including a conjecture motivated by integer programming by Kannan and Lovasz (Annals of Math. 1988), a question from additive combinatorics asked by Green, a question on Brownian motions asked by Saloff-Coste (Colloq. Math. 2010), a theorem by Milman and Pisier from convex geometry (Ann. Probab. 1987), worst-case to average-case reductions in lattice-based cryptography, and more. We present these connections, provide evidence for the conjecture, and discuss possible approaches towards a proof. Our main technical contribution is in proving that our conjecture implies the l2 case of the Kannan and Lovasz conjecture. The proof relies on a novel convex relaxation for the covering radius, and a rounding procedure based on "uncrossing" lattice subspaces.
更多
查看译文
关键词
lattices,geometry,Minkowski's first theorem
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要