10.1 A pin-efficient 20.83Gb/s/wire 0.94pJ/bit forwarded clock CNRZ-5-coded SerDes up to 12mm for MCM packages in 28nm CMOS

2016 IEEE International Solid-State Circuits Conference (ISSCC)(2016)

引用 53|浏览59
暂无评分
摘要
High-speed signaling over package substrates is key to delivering the promise of 2.5D integration. Applications abound and include high-density memory interfaces, sub-division of large dies to increase yield and lower development time, sub-division of a die to achieve upward or downward scalability, or connecting to an off-chip SerDes or optics engine. Each of these in-package applications typically has high throughput and onerously low power constraints along with a low-loss channel. Several solutions have been proposed. Interposer substrates [1], or Chip-on-Substrate-on-Wafer [2] allow for very high-density wiring and low power using CMOS transceivers. Their high manufacturing and testing cost makes them prohibitive for anything but high-end applications. A different approach using high-speed ground-referenced single-ended signaling is reported in [3], which is intended for shorter channels up to 4.5mm and a BER of 1e-12. An approach using differential signaling on up to 0.75" of Megtron 6 material and a BER of 1e-9 is reported in [4]. A comparison is given in Fig. 10.1.1.
更多
查看译文
关键词
pin-efficient bit forwarded clock,CNRZ-5-coded SerDes,MCM packages,2.5D integration,high-density memory interfaces,large dies subdivision,off-chip SerDes,optics engine,chip-on-substrate-on-wafer,CMOS transceivers,high-speed ground-referenced single-ended signaling,BER,Megtron 6 material,size 28 nm
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要