GPU Accelerated Molecular Docking Simulation with Genetic Algorithms.

Lecture Notes in Computer Science(2016)

引用 9|浏览5
暂无评分
摘要
Receptor-Ligand Molecular Docking is a very computationally expensive process used to predict possible drug candidates for many diseases. A faster docking technique would help life scientists to discover better therapeutics with less effort and time. The requirement of long execution times may mean using a less accurate evaluation of drug candidates potentially increasing the number of false-positive solutions, which require expensive chemical and biological procedures to be discarded. Thus the development of fast and accurate enough docking algorithms greatly reduces wasted drug development resources, helping life scientists discover better therapeutics with less effort and time. In this article we present the GPU-based acceleration of our recently developed molecular docking code. We focus on offloading the most computationally intensive part of any docking simulation, which is the genetic algorithm, to accelerators, as it is very well suited to them. We show how the main functions of the genetic algorithm can be mapped to the GPU. The GPU-accelerated system achieves a speedup of around similar to 14x with respect to a single CPU core. This makes it very productive to use GPU for small molecule docking cases.
更多
查看译文
关键词
GPU,OpenCL,Molecular docking,Genetic algorithm,Parallelization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要