A framework of verified eigenvalue bounds for self-adjoint differential operators

Applied Mathematics and Computation(2015)

引用 43|浏览38
暂无评分
摘要
For eigenvalue problems of self-adjoint differential operators, a universal framework is proposed to give explicit lower and upper bounds for the eigenvalues. In the case of the Laplacian operator, by applying Crouzeix-Raviart finite elements, an efficient algorithm is developed to bound the eigenvalues for the Laplacian defined in 1D, 2D and 3D spaces. Moreover, for nonconvex domains, for which case there may exist singularities of eigenfunctions around re-entrant corners, the proposed algorithm can easily provide eigenvalue bounds. By further adopting the interval arithmetic, the explicit eigenvalue bounds from numerical computations can be mathematically correct.
更多
查看译文
关键词
Self-adjoint differential operator,Eigenvalue bounds,Non-conforming finite element method,Quantitative error estimation,Verified computation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要