Probabilistic Modeling Of Noise Transfer Characteristics In Digital Circuits

ADVANCES IN RADIO SCIENCE(2011)

引用 0|浏览2
暂无评分
摘要
Device scaling, the driving force of CMOS technology, led to continuous decrease in the energy level representing logic states. The resulting small noise margins in combination with increasing problems regarding the supply voltage stability and process variability creates a design conflict between efficiency and reliability. This conflict is expected to rise more in future technologies. Current research approaches on fault-tolerance architectures and countermeasures at circuit level, unfortunately, cause a significant area and energy penalty without guaranteeing absence of errors. To overcome this problem, it seems to be attractive to tolerate bit errors at circuit level and employ error handling methods at higher system levels. To do this, an estimate of the bit error rate (BER) at circuit level is necessary. Due to the size of the circuits, Monte Carlo simulation suffers from impractical runtimes. Therefore the needed modeling scheme is proposed. The model allows a probabilistic estimation of error rates at circuit level taking into account statistical effects ranging from supply noise and electromagnetic coupling to process variability within reasonable runtimes.
更多
查看译文
关键词
probabilistic model,bit error rate,monte carlo simulation,digital circuits,error handling,energy levels,error rate,fault tolerant
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要