Four-Dimensional Magnetic Resonance Imaging With 3-Dimensional Radial Sampling and Self-Gating–Based K-Space Sorting: Early Clinical Experience on Pancreatic Cancer Patients

International Journal of Radiation Oncology*Biology*Physics(2015)

引用 20|浏览9
暂无评分
摘要
Purpose To apply a novel self-gating k-space sorted 4-dimensional MRI (SG-KS-4D-MRI) method to overcome limitations due to anisotropic resolution and rebinning artifacts and to monitor pancreatic tumor motion. Methods and Materials Ten patients were imaged using 4D-CT, cine 2-dimensional MRI (2D-MRI), and the SG-KS-4D-MRI, which is a spoiled gradient recalled echo sequence with 3-dimensional radial-sampling k-space projections and 1-dimensional projection-based self-gating. Tumor volumes were defined on all phases in both 4D-MRI and 4D-CT and then compared. Results An isotropic resolution of 1.56 mm was achieved in the SG-KS-4D-MRI images, which showed superior soft-tissue contrast to 4D-CT and appeared to be free of stitching artifacts. The tumor motion trajectory cross-correlations (mean ± SD) between SG-KS-4D-MRI and cine 2D-MRI in superior–inferior, anterior–posterior, and medial–lateral directions were 0.93 ± 0.03, 0.83 ± 0.10, and 0.74 ± 0.18, respectively. The tumor motion trajectories cross-correlations between SG-KS-4D-MRI and 4D-CT in superior–inferior, anterior–posterior, and medial–lateral directions were 0.91 ± 0.06, 0.72 ± 0.16, and 0.44 ± 0.24, respectively. The average standard deviation of gross tumor volume calculated from the 10 breathing phases was 0.81 cm 3 and 1.02 cm 3 for SG-KS-4D-MRI and 4D-CT, respectively ( P =.012). Conclusions A novel SG-KS-4D-MRI acquisition method capable of reconstructing rebinning artifact–free, high-resolution 4D-MRI images was used to quantify pancreas tumor motion. The resultant pancreatic tumor motion trajectories agreed well with 2D-cine-MRI and 4D-CT. The pancreatic tumor volumes shown in the different phases for the SG-KS-4D-MRI were statistically significantly more consistent than those in the 4D-CT.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要