Focused-ion beam patterning of organolead trihalide perovskite for subwavelength grating nanophotonic applications

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B(2015)

引用 54|浏览6
暂无评分
摘要
The coherent amplified spontaneous emission and high photoluminescence quantum efficiency of organolead trihalide perovskite have led to research interest in this material for use in photonic devices. In this paper, the authors present a focused-ion beam patterning strategy for methylammonium lead tribromide (MAPbBr(3)) perovskite crystal for subwavelength grating nanophotonic applications. The essential parameters for milling, such as the number of scan passes, dwell time, ion dose, ion current, ion incident angle, and gas-assisted etching, were experimentally evaluated to determine the sputtering yield of the perovskite. Based on our patterning conditions, the authors observed that the sputtering yield ranged from 0.0302 to 0.0719 mu m(3)/pC for the MAPbBr(3) perovskite crystal. Using XeF2 for the focused-ion beam gas-assisted etching, the authors determined that the etching rate was reduced to between 0.40 and 0.97, depending on the ion dose, compared with milling with ions only. Using the optimized patterning parameters, the authors patterned binary and circular subwavelength grating reflectors on the MAPbBr(3) perovskite crystal using the focused-ion beam technique. Based on the computed grating structure with around 97% reflectivity, all of the grating dimensions (period, duty cycle, and grating thickness) were patterned with nanoscale precision (> +/- 3 nm), high contrast, and excellent uniformity. Our results provide a platform for utilizing the focused-ion beam technique for fast prototyping of photonic nanostructures or nanodevices on organolead trihalide perovskite. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
更多
查看译文
关键词
sputtering,diffraction gratings
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要