High efficiency yellow organic light-emitting diodes with a solution-processed molecular host-based emissive layer

JOURNAL OF MATERIALS CHEMISTRY C(2013)

引用 29|浏览18
暂无评分
摘要
Highly efficient yellow organic light-emitting diodes (OLEDs) with a solution-process feasible emissive layer were fabricated by simply using molecular hosts doped with an iridium-complex based yellow emitter. The best yellow OLED device studied here showed for example, at 100 cd m(-2), a power efficiency of 32 lm W-1, a 113% improvement compared with the prior record of 15 lm W-1 based on the same emitter with a polymeric host. The marked efficiency improvement may be attributed to the device being composed of an electron-injection-barrier free architecture, a device structure that led the excitons to generate preferably on the host to enable the efficiency-effective host-to-guest energy transfer to occur and the employed molecular host that exhibited a good host-to-guest energy transfer. The efficiencies were further improved to 53, 39 and 14 lm W-1 at 100, 1000 and 10 000 cd m(-2), respectively, with the use of a micro-lens. This study also demonstrates the possibility of achieving relatively high device efficiency for wet-processed OLED devices via balancing the injection of carriers with commercially available OLED materials and limited designs in device structure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要