Influence of ensemble boundary conditions (thermostat and barostat) on the deformation of amorphous polyethylene by molecular dynamics

mag(2013)

引用 23|浏览9
暂无评分
摘要
Molecular dynamics simulations are increasingly being used to investigate the structural evolution of polymers during mechanical deformation, but relatively few studies focus on the influence of boundary conditions on this evolution, in particular the dissipation of both heat and pressure through the periodic boundaries during deformation. The research herein explores how the tensile deformation of amorphous polyethylene, modelled with a united atom method potential, is influenced by heat and pressure dissipation. The stress-strain curves for the pressure dissipation cases (uniaxial tension) are in qualitative agreement with experiments and show that heat dissipation has a large effect on the strain hardening modulus calculated by molecular dynamics simulations. The evolution of the energy associated with bonded and non-bonded terms was quantified as a function of strain as well as the evolution of stress in both the loading and non-loading directions to give insight into how the stress state is altered within the elastic, yield, strain softening, and strain hardening regions. The stress partitioning shows a competition between `tensile' Van der Waal's interactions and `compressive' bond stretching forces, with the characteristic yield stress peak clearly associated with the non-bonded stress. The lack of heat dissipation had the largest effect on the strain hardening regime, where an increase in the calculated temperature correlated with faster chain alignment in the loading direction and more rapid conformation changes. In part, these observations demonstrate the role that heat and pressure dissipation play on deformation characteristics of amorphous polymers, particularly for the strain hardening regime.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要