Numerical Investigation of a Parallel-Plate Atmospheric-Pressure Nitrogen/Ammonia Dielectric Barrier Discharge

F.-L. Li,K.-M. Lin,Y.-W. Yang, C.-T. Hung,J.-S. Wu, J.-P. Yu

Plasma Chemistry and Plasma Processing(2012)

引用 6|浏览6
暂无评分
摘要
In this paper, a planar atmospheric-pressure dielectric barrier discharge (AP-DBD) of nitrogen mixed with ammonia (0–2 %) is simulated using one-dimensional self-consistent fluid modeling with cell-centered finite-volume method. This AP-DBD is driven by a 30 kHz power source with distorted sinusoidal voltages. The simulated discharge current densities are found to be in good agreement with the experiment data in both phase and magnitude. The simulated results show that the discharges of N 2 mixed with NH 3 (0–2 %) are all typical Townsend-like discharges because the ions always outnumber the electrons very much which leads to no quasi-neutral region in the gap throughout the cycle. N 2 + and N 4 + are found to be the most abundant charged species during and after the breakdown process, respectively, like a pure nitrogen DBD. NH 4 + increases rapidly initially with increasing addition of NH 3 and levels off eventually. In addition, N is the most dominant neutral species, except the background species, N 2 and NH 3 , and NH 2 and H are the second dominant species, which increase with increasing added NH 3 . The existence of abundant NH 2 plays an important role in those applications which require functional group incorporation.
更多
查看译文
关键词
Fluid modeling,Finite-volume method,Atmospheric-pressure dielectric barrier discharge,Nitrogen,Ammonia,Townsend-like discharge
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要