Energy efficiency in surmounting the central energy barrier: a quantum dynamics study of the OH + CH3 → O + CH4 reaction.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS(2015)

引用 14|浏览1
暂无评分
摘要
The present quantum dynamics study of the OH + CH3 shows that, for this "central" (slightly early) barrier reaction, it is the vibrational energy of the reactant OH that is more effective in promoting the reactivity than the translational energy; while previous studies show that, for its forward reaction O + CH4 also with a "central" (slightly late) barrier, it is the translational energy that is more effective in surmounting the energy barrier than the vibrational energy. Since both barriers deviate only slightly from the center of the potential energy surface, these findings indicate that for these two reactions with more-or-less central barriers, a small change of the barrier location can greatly affect which energy form determines the reaction reactivity. This study also shows that both the rotational excitation states of OH and CH3 hinder the reactivity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要