Eye position information is used to compensate the consequences of ocular torsion on V1 receptive fields

NATURE COMMUNICATIONS(2014)

引用 14|浏览5
暂无评分
摘要
It is commonly held that the receptive fields (RFs) of neurons in primary visual cortex (V1) are fixed relative to the retina. Hence, V1 should be unable to distinguish between retinal image shifts due to object motion and image shifts resulting from ego motion. Here we show that, in contrast to this belief, a particular class of neurons in V1 of non-human primates have RFs that are actually head centred, despite intervening eye movements. They use eye position information to shift their RFs location and to change their orientation tuning on the retina so as to fully compensate for the retinal consequences of a particular type of reflexive eye movements, ocular counter-roll, an eye rotation around the line of sight partially counterpoising head tilt. In other words, V1 uses eye position information to resolve the ambiguity if retinal image tilt is the result of the tilting of an object or of the ocular counter-roll.
更多
查看译文
关键词
Biological sciences, Neuroscience
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要