Visual gravity influences arm movement planning.

JOURNAL OF NEUROPHYSIOLOGY(2012)

引用 31|浏览2
暂无评分
摘要
Sciutti A, Demougeot L, Berret B, Toma S, Sandini G, Papaxanthis C, Pozzo T. Visual gravity influences arm movement planning. J Neurophysiol 107: 3433-3445, 2012. First published March 21, 2012; doi:10.1152/jn.00420.2011.-When submitted to a visuomotor rotation, subjects show rapid adaptation of visually guided arm reaching movements, indicated by a progressive reduction in reaching errors. In this study, we wanted to make a step forward by investigating to what extent this adaptation also implies changes into the motor plan. Up to now, classical visuomotor rotation paradigms have been performed on the horizontal plane, where the reaching motor plan in general requires the same kinematics (i.e., straight path and symmetric velocity profile). To overcome this limitation, we considered vertical and horizontal movement directions requiring specific velocity profiles. This way, a change in the motor plan due to the visuomotor conflict would be measurable in terms of a modification in the velocity profile of the reaching movement. Ten subjects performed horizontal and vertical reaching movements while observing a rotated visual feedback of their motion. We found that adaptation to a visuomotor rotation produces a significant change in the motor plan, i.e., changes to the symmetry of velocity profiles. This suggests that the central nervous system takes into account the visual information to plan a future motion, even if this causes the adoption of nonoptimal motor plans in terms of energy consumption. However, the influence of vision on arm movement planning is not fixed, but rather changes as a function of the visual orientation of the movement. Indeed, a clear influence on motion planning can be observed only when the movement is visually presented as oriented along the vertical direction. Thus vision contributes differently to the planning of arm pointing movements depending on motion orientation in space.
更多
查看译文
关键词
motor planning,visual rotation,visuomotor conflict,vertical,internal model of gravity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要