Smart honeycomb tile for small satellites

Big Sky, MT(2014)

引用 3|浏览3
暂无评分
摘要
Traditional satellite technologies integrate solar panels, thermo mechanical subsystems, power management, data processing and harness subsystems together in a late stage of design. More recently this approach has become inefficient and its limitation can easily be overcome with modern manufacturing technologies. This paper proposes an innovative approach to embed power, signal processing and harness together with thermo mechanical subsystem(s) and when required, solar panels. The approach has been developed for the AraMiS architecture for low-cost modular satellites, but it can easily be adapted to other architectures, missions and spacecraft sizes. The architecture consists of tiles or panel bodies containing solar panels on exterior side and all necessary electronic subsystems on the interior side. The proposed approach uses very thin commercial PCBs (0.2 or 0.3mm thick) as the lateral skins for honeycomb structure. The interior side also contains commercial tile processors and plug & play connectors for any desired subsystem placement. The processors implement common functionalities for signal processing, data communication and control operation. The interior side can also host power conversion, for an improved fault-tolerant interface of solar panels with the power management subsystem. A high-performance power distribution bus has also been tested, for a distributed approach to satellite power management. The proposed design uses exclusively the UML diagrams for illustration purpose and software handling of housekeeping data.
更多
查看译文
关键词
unified modeling language,artificial satellites,fault tolerant computing,honeycomb structures,aramis architecture,pcb,uml diagrams,data communication,high-performance power distribution bus,improved fault-tolerant interface,satellite power management subsystem,signal processing,small satellites,smart honeycomb tile,solar panels,switches,telecommunications
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要