7.5 A 3.3ns-access-time 71.2μW/MHz 1Mb embedded STT-MRAM using physically eliminated read-disturb scheme and normally-off memory architecture

ISSCC(2015)

引用 121|浏览66
暂无评分
摘要
Nonvolatile memory, spin-transfer torque magnetoresistive RAM (STT-MRAM) is being developed to realize nonvolatile working memory because it provides high-speed accesses, high endurance, and CMOS-logic compatibility. Furthermore, programming current has been reduced drastically by developing the advanced perpendicular STT-MRAM [1]. Several-megabit STT-MRAM with sub-5ns operation is demonstrated in [2]. Advanced perpendicular STT-MRAM achieve ~3× power saving by reducing leakage current in memory cells compared with SRAM for last level cache (LLC) [3]. Such high-speed RAM applications, however, entail several issues: the probability of read disturbance error increases and the active power of STT-MRAM must be decreased for higher access speed. Moreover, the leakage power of peripheral circuits must be decreased, because the high-speed RAM requires high-performance transistors having high leakage current in peripheral circuitry [4], limiting the energy efficiency of STT-MRAM. To resolve these issues, this paper presents STT-MRAM circuit designs: a short read-pulse generator with small overhead using hierarchical bitline for eliminating read disturbance, a charge-optimization scheme to avoid excessive active charging/discharging power, and ultra-fast power gating and power-on adaptive to RAM status for reducing leakage power.
更多
查看译文
关键词
central processing unit,nonvolatile memory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要