Multiplexed metropolis light transport

ACM Trans. Graph.(2014)

引用 94|浏览83
暂无评分
摘要
Global illumination algorithms using Markov chain Monte Carlo (MCMC) sampling are well-known for their efficiency in scenes with complex light transport. Samples in such algorithms are generated as a history of Markov chain states so that they are distributed according to the contributions to the image. The whole process is done based only on the information of the path contributions and user-defined transition probabilities from one state to the others. In light transport simulation, however, there is more information that can be used to improve the efficiency of path sampling. A notable example is multiple importance sampling (MIS) in bidirectional path tracing, which utilizes the probability densities of constructing a given path with different estimators. While MIS is a powerful ordinary Monte Carlo method, how to incorporate such additional information into MCMC sampling has been an open problem. We introduce a novel MCMC sampling framework, primary space serial tempering, which fuses the ideas of MCMC sampling and MIS for the first time. The key idea is to explore not only the sample space using a Markov chain, but also different estimators to generate samples by utilizing the information already available for MIS. Based on this framework, we also develop a novel rendering algorithm, multiplexed Metropolis light transport, which automatically and adaptively constructs paths with appropriate techniques as predicted by MIS. The final algorithm is very easy to implement, yet in many cases shows comparable (or even better) performance than significantly more complex MCMC rendering algorithms.
更多
查看译文
关键词
global illumination,markov chain monte carlo,multiple importance sampling,raytracing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要