Toward Combining Speed, Efficiency, Versatility, And Robustness In An Autonomous Quadruped

IEEE TRANSACTIONS ON ROBOTICS(2014)

引用 144|浏览124
暂无评分
摘要
This paper provides an overview about StarlETH: a compliant quadrupedal robot that is designed to study fast, efficient, versatile, and robust locomotion. The platform is driven by highly compliant series elastic actuation, which makes the system fully torque controllable, energetically efficient, and well suited for dynamic maneuvers. Using model-based control strategies, this medium dog-sized machine is capable of various gaits ranging from static walking to dynamic running over challenging terrain. StarlETH is equipped with an onboard PC, batteries, and various sensor equipment that enables enduring autonomous operation. In this paper, we provide an overview about the underlying locomotion control algorithms, outline a real-time control and simulation environment, and conclude the work with a number of experiments to demonstrate the performance of the presented hardware and controllers.
更多
查看译文
关键词
Compliant system, dynamic locomotion, legged robots, quadruped robot, series elastic actuation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要