Numerical simulation on the dynamic stall of the horizontal-axis wind turbine

Applied Mechanics and Materials(2014)

引用 0|浏览9
暂无评分
摘要
With the variation of the unsteady incoming flow and impeller rotation, when attack angles of the incoming flow is bigger than the critical angle of attack, there are unsteady separation and dynamic stall on the pressure surface of the impeller. Dynamic stalls are of common occurrence during wind turbines' operation. And the aerodynamic characteristics and efficiency of wind turbine are largely affected by the dynamic stall.Therefore,the study of dynamic stall has a great significance over the optimization design of the wind turbine. The paper performs numerical simulation in the dynamic stalls of the 1.2MW horizontal-axis wind turbine, comparing the stalling difference between two-dimensional static and rotating condition. Besides, it also contrasts the stalling condition surface pressure coefficient along the different blade spanwise sections in rotating condition of the same attack angle. And the finding is that the attack angles in rotating condition is bigger than that in the two-dimensional static condition; the surface pressure coefficient is almost equivalent in static and rotating condition when attack angle is smaller than stalling angle; the peak of negative pressure at the leading edge of blade in rotating condition is far bigger than the peak of negative pressure in static condition when attack angle is smaller than static stalling angle. Airflow stall delay occurs when near the blade root. Stall delay phenomenon gradually weakened along the direction of blade radius. ? (2014) Trans Tech Publications, Switzerland.
更多
查看译文
关键词
attack angle,dynamic stall,pressure coefficient,stall delay
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要