S4: Small State and Small Stretch Compact Routing Protocol for Large Static Wireless Networks

IEEE/ACM Trans. Netw.(2010)

引用 40|浏览20
暂无评分
摘要
Routing protocols for large wireless networks must address the challenges of reliable packet delivery at increasingly large scales and with highly limited resources. Attempts to reduce routing state can result in undesirable worst-case routing performance, as measured by stretch, which is the ratio of the hop count of the selected path to that of the optimal path. We present a new routing protocol, Small State and Small Stretch (S4), which jointly minimizes the state and stretch. S4 uses a combination of beacon distance-vector-based global routing state and scoped distance-vector-based local routing state to achieve a worst-case stretch of 3 using O(√(N)) routing state per node in an N-node network. Its average routing stretch is close to 1. S4 further incorporates local failure recovery to achieve resilience to dynamic topology changes. We use multiple simulation environments to assess performance claims at scale and use experiments in a 42-node wireless sensor network testbed to evaluate performance under realistic RF and failure dynamics. The results show that S4 achieves scalability, efficiency, and resilience in a wide range of scenarios.
更多
查看译文
关键词
Routing protocols,Wireless networks,Resilience,Wireless sensor networks,Scalability,Wireless application protocol,Large-scale systems,Network topology,Testing,Optimal control
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要