Optimality, Fairness, And Robustness In Speed Scaling Designs

SIGMETRICS '10: ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems New York New York USA June, 2010(2010)

引用 0|浏览272
暂无评分
摘要
This work examines fundamental tradeoffs incurred by a speed scaler seeking to minimize the sum of expected response time and energy use per job. We prove that a popular speed scaler is 2-competitive for this objective and no "natural" speed scaler can do better. Additionally, we prove that energy-proportional speed scaling works well for both Shortest Remaining Processing Time (SRPT) and Processor Sharing (PS) and we show that under both SRPT and PS, gated-static speed scaling is nearly optimal when the mean workload is known, but that dynamic speed scaling provides robustness against uncertain workloads. Finally, we prove that speed scaling magnifies unfairness under SRPT but that PS remains fair under speed scaling. These results show that these speed scalers can achieve any two, but only two, of optimality, fairness, and robustness.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要