Stationary Probability Model For Microscopic Parallelism In Jpeg2000

IEEE Transactions on Multimedia(2014)

引用 17|浏览53
暂无评分
摘要
Parallel processing is key to augmenting the throughput of image codecs. Despite numerous efforts to parallelize wavelet-based image coding systems, most attempts fail at the parallelization of the bitplane coding engine, which is the most computationally intensive stage of the coding pipeline. The main reason for this failure is the causality with which current coding strategies are devised, which assumes that one coefficient is coded after another. This work analyzes the mechanisms employed in bitplane coding and proposes alternatives to enhance opportunities for parallelism. We describe a stationary probability model that, without sacrificing the advantages of current approaches, removes the main obstacle to the parallelization of most coding strategies. Experimental tests evaluate the coding performance achieved by the proposed method in the framework of JPEG2000 when coding different types of images. Results indicate that the stationary probability model achieves similar coding performance, with slight increments or decrements depending on the image type and the desired level of parallelism.
更多
查看译文
关键词
Bitplane image coding,JPEG2000,parallel architectures,probability models
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要