Scalable and Fault Tolerant Computation with the Sparse Grid Combination Technique.

CoRR(2014)

引用 38|浏览20
暂无评分
摘要
This paper continues to develop a fault tolerant extension of the sparse grid combination technique recently proposed in [B. Harding and M. Hegland, ANZIAM J., 54 (CTAC2012), pp. C394-C411]. The approach is novel for two reasons, first it provides several levels in which one can exploit parallelism leading towards massively parallel implementations, and second, it provides algorithm-based fault tolerance so that solutions can still be recovered if failures occur during computation. We present a generalisation of the combination technique from which the fault tolerant algorithm is a consequence. Using a model for the time between faults on each node of a high performance computer we provide bounds on the expected error for interpolation with this algorithm. Numerical experiments on the scalar advection PDE demonstrate that the algorithm is resilient to faults on a real application. It is observed that the trade-off of recovery time to decreased accuracy of the solution is suitably small. A comparison with traditional checkpoint-restart methods applied to the combination technique show that our approach is highly scalable with respect to the number of faults.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要