Robot Assisted Force Feedback Surgery

Advances in Telerobotics(2007)

引用 40|浏览86
暂无评分
摘要
Minimally invasive surgery characterizes a sophisticated operation technique in which long, slender instruments are inserted into the patient through small incisions. Though providing crucial benefits compared to open surgery (i.e. reduced tissue traumatization) it is also faced with a number of disadvantages. One of the major problems is that the surgeon cannot access the operating field directly and, therefore, can neither palpate tissue nor sense forces sufficiently. Furthermore, the dexterity of the surgeon is reduced as the instruments have to be pivoted around an invariant point. To overcome some of the drawbacks, telepresence constitutes a promising approach. The surgical instruments can be equipped with miniaturized force/torque sensors and contact forces can be displayed to the surgeon using a suitable man-machine interface. Furthermore, instruments can be built with additional degrees of freedom at the distal end, providing full dexterity inside the patient’s body. Thanks to telepresence the surgeon regains direct access to the operating field, similar to open surgery. In this chapter a prototypical force reflecting minimally invasive robotic surgery system based on two surgical robots is presented. The robots are equipped with a sensorized scalpel and a stereo laparoscope for visual feedback. The operator console consists of a PHANToM force feedback device and a stereoscopic display. Experimental results of a tissue dissection task revealed significant differences between manual and robot assisted surgery. At the end of the chapter some conclusions based on the experimental evaluation are drawn, showing that both, manual and robotic minimally invasive surgery have specific advantages.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要