Microfluidic reprogramming to pluripotency of human somatic cells

NATURE PROTOCOLS(2019)

引用 29|浏览20
暂无评分
摘要
Human induced pluripotent stem cells (hiPSCs) have a number of potential applications in stem cell biology and regenerative medicine, including precision medicine. However, their potential clinical application is hampered by the low efficiency, high costs, and heavy workload of the reprogramming process. Here we describe a protocol to reprogram human somatic cells to hiPSCs with high efficiency in 15 d using microfluidics. We successfully downscaled an 8-d protocol based on daily transfections of mRNA encoding for reprogramming factors and immune evasion proteins. Using this protocol, we obtain hiPSC colonies (up to 160 ± 20 mean ± s.d ( n = 48)) in a single 27-mm 2 microfluidic chamber) 15 d after seeding ~1,500 cells per independent chamber and under xeno-free defined conditions. Only ~20 µL of medium is required per day. The hiPSC colonies extracted from the microfluidic chamber do not require further stabilization because of the short lifetime of mRNA. The high success rate of reprogramming in microfluidics, under completely defined conditions, enables hundreds of cells to be simultaneously reprogrammed, with an ~100-fold reduction in costs of raw materials compared to those for standard multiwell culture conditions. This system also enables the generation of hiPSCs suitable for clinical translation or further research into the reprogramming process.
更多
查看译文
关键词
Cell culture,High-throughput screening,Induced pluripotent stem cells,Reprogramming,Life Sciences,general,Biological Techniques,Analytical Chemistry,Microarrays,Computational Biology/Bioinformatics,Organic Chemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要