Fast Generation of Large Scale Social Networks While Incorporating Transitive Closures

PASSAT), 2012 International Conference and 2012 International Confernece Social Computing(2012)

引用 31|浏览1
暂无评分
摘要
A key challenge in the social network community is the problem of network generation -- that is, how can we create synthetic networks that match characteristics traditionally found in most real world networks? Important characteristics that are present in social networks include a power law degree distribution, small diameter, and large amounts of clustering. However, most current network generators, such as the Chung Lu and Kronecker models, largely ignore the clustering present in a graph and focus on preserving other network statistics, such as the power law distribution. Models such as the exponential random graph model have a transitivity parameter that can capture clustering, but they are computationally difficult to learn, making scaling to large real world networks intractable. In this work, we propose an extension to the Chung Lu random graph model, the Transitive Chung Lu (TCL) model, which incorporates the notion transitive edges. Specifically, it combines the standard Chung Lu model with edges that are formed through transitive closure (e.g., by connecting a 'friend of a friend'). We prove TCL's expected degree distribution is equal to the degree distribution of the original input graph, while still providing the ability to capture the clustering in the network. The single parameter required by our model can be learned in seconds on graphs with millions of edges, networks can be generated in time that is linear in the number of edges. We demonstrate the performance of TCL on four real-world social networks, including an email dataset with hundreds of thousands of nodes and millions of edges, showing TCL generates graphs that match the degree distribution, clustering coefficients and hop plots of the original networks.
更多
查看译文
关键词
degree distribution,kronecker model,expected degree distribution,clustering coefficient,network generation,fast generation,large real world network,incorporating transitive closures,exponential random graph model,current network generator,clustering present,large scale social networks,network statistic,statistical distributions,complex networks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要